DEVELOPING A MORPHING FIN FOR A BIOMIMETIC UNDERWATER VEHICLE

K. W. MOORED and H. BART-SMITH
University of Virginia
Department of Mechanical and Aerospace Engineering
122 Engineer’s Way, Charlottesville, VA 22904

Abstract

Myliobatidae is a family of large pelagic rays including cownose, eagle and manta rays. They are extremely efficient swimmers, can cruise at high speeds and can perform turn-on-a-dime maneuvering, making these fishes excellent inspiration for an autonomous underwater vehicle. A synthetic pectoral fin, similar to the fins of myliobatoid rays, is being developed using a tensegrity structural foundation. A tensegrity structure is a truss-like structure composed of cables and struts that only has a stable shape from an imposed state of pre-stress in the structure. Actuation strategies for these contemporary structures have been identified. Theoretical models have been developed to be able to design structures using any of the actuation strategies. Specifically, the models investigate pre-stress states, mechanisms, stability, actuation response and loading response of the structures.

1 Introduction and Motivation

Research into active structures has been at the forefront of aerospace, mechanical and civil engineering in recent years. Tensegrity structures (Figure 1a) are well suited as active structures and, more specifically, they are advantageous for large amplitude, low inertia applications. Tensegrity structures are a subset of pin-jointed truss structures of the statically indeterminate type. The integrity of a tensegrity structure is due to the balance of tensional forces in the cables with compressive forces in the struts. The cable elements are unilaterally rigid meaning that they cannot carry a compressive load due to buckling instability, but they give tensegrity systems high strength-to-weight ratios by reducing the structural mass. This can reduce the energetic cost to accelerate the system compared to conventional pin-jointed frameworks.

The goal of this paper is to present an actuation strategy for tensegrity structures that is scalable, from active structures with a few active elements (< 10) to active structures with many active elements (> 10). This strategy is known as clustered actuation which is the actuation of a cable element cluster. A cluster is a group of individual cable elements in a structure that are combined into one continuous cable element that runs over frictionless pulleys or through frictionless loops at the nodes (Figure 1b). The concept of clustered actuation has been investigated in the context of deployable pantographic structures and in some deployable tensegrity structures as a method for the application and removal of self-stress to deploy and collapse a structure. This current study formulates the potential energy, equilibrium equations and stiffness matrix for a general tensegrity structure with clustered actuation and it is shown that the classic tensegrity equations are a subset of the clustered tensegrity equilibrium equations.

Currently there are two actuation strategies for introducing actuators into a tensegrity system. The first strategy, which will be referred to as embedded actuation, directly places actuators into the struc-
ture by replacing individual elements of the structure and has been used by many researchers7, 8, 9. Embedded actuation is the simplest solution to envision and has the benefit of working in any type of tensegrity structure. However, embedded actuation has many limitations. As an active prototype with a few active elements is scaled up to an active structure with many active elements the number of necessary embedded actuators scales up as well. Thus this strategy becomes impractical due to increased controls complexity, energy consumption, added mass, and cost. Moreover, the element sizes are constrained by the size of the actuators and in dynamic actuation the added inertia increases the power consumption. The second actuation strategy which will be referred to as \textit{strut-routed actuation} allows an actuator to attach to an active element by running a cable through a series of connected struts that make a path from the active element to the actuator location10. This strategy has the advantage of migrating the actuators outside of the structure to reverse the added mass and element size constraints of embedded actuation. This strategy, though, has two main limitations. First, when this strategy is applied to active structures with many active elements it quickly becomes infeasible to fabricate since numerous active cables are routed through the same strut paths and spacing becomes critical. Secondly, strut-routed actuation only works for tensegrity structures with bar-to-bar connections. In small-scale structures (\(< 30 \text{ elements}\)) this limitation tends not to matter, but for large-scale (\(> 30 \text{ elements}\)) class 1 structures4 there is a localized region where actuation can be applied leaving regions of the structure that cannot be reached using a strut-routed actuation strategy.

Embedded actuation and strut-routed actuation do not significantly change the mechanics of the classical tensegrity governing equations. They only add mass to the members in the case of embedded actuation or compressive loads to the struts in the case of strut-routed actuation, but the response can be predicted with the classic tensegrity equations. However, as soon as two cables are clustered together there can be a dramatic shift in the mechanics of a tensegrity structure. Specifically the number of self-stress states can decrease and the mechanisms can increase. Thus new governing equations must be developed that include the mechanics of clustered elements and the implications must be explored. Much of the derivations and background definitions for this paper can be found in Moored and Bart-Smith (2009)12.

2 Introducing Clustered Elements

Clustered actuation is a strategy that can only be applied to the cables in a structural system. When two elements in a structure are theoretically clustered together they become a single element that is assumed to run frictionlessly through a nodal point (Figure 2). This can be achieved by having a cable element wrap once around a pulley pinned to a node while allowing the cable to exit in two directions thereby replacing two cables in the structure with one. To fully define the state of a clustered tensegrity structure new information is supplied in the form of the clustering matrix.

Definition 2.1

The clustering matrix must follow two rules: (1) only cable elements are allowed to be clustered and (2) only adjacent elements are allowed to be clustered.2 The clustering matrix, \(S \in \mathbb{R}^{c \times c}\), relates the clustered set of elements, \(\vec{e}\), to the classic set of elements, \(e\).

\[
S_{ij} = \begin{cases}
1 & \text{if the clustered element } \vec{e}_i \text{ is composed of the classic element } e_j \\
0 & \text{otherwise}
\end{cases}
\]

Figure 2 shows an example of applying definition 2.10 to parameterize a clustering matrix for a planar tensegrity structure with a cluster being composed of elements 1 and 3. As can be seen from the example, if no cable elements were clustered in the planar structure then the clustering matrix would identically be equal to the identity matrix, \(I \in \mathbb{R}^{c \times c}\). Therefore the classical limit is when \(S = I\).

Clustering changes the mechanics of a tensegrity structure. There are two physical interpretations for understanding how the mechanics are affected by clustering: (1) the kinematic perspective and (2) the static perspective. Each perspective allows to a different mathematical condition that can be used to derive the clustered equilibrium equations.

The kinematic perspective views every member in a tensegrity structure as a kinematic constraint applied to a node. For every cable element that is added to a cluster, a kinematic constraint on the system is lost. A reduction in the number of constraints can change or create mechanisms that may or may not be stabilized by a state of pre-stress. This concept facilitates the need to have accurate equilibrium constraints.

2If part of a cluster is routed through a bar then the connectivity matrix should reflect the existence of a cable element occupying the same space as the bar.
Figure 2: Example shows the clustering matrix for a planar tensegrity with one cluster. The thick solid lines are the struts, the thin solid lines are discrete cables and the thin dashed line is the cluster.

equations for pre-stress analysis. The kinematic condition converts the vector of classic lengths, \(\mathbf{l} \), to a reduced set of clustered lengths, \(\mathbf{\bar{l}} \), through the clustering matrix \(\mathbf{S} \).

\[
\mathbf{\bar{l}} = \mathbf{S} \mathbf{l} \quad (1)
\]

Equivalently the rest lengths of the members may be defined in the same way.

\[
\mathbf{\bar{l}}_0 = \mathbf{S} \mathbf{l}_0 \quad (2)
\]

The second physical interpretation of clustering is that the forces in the elements that are clustered must equilibrate to the same tension, assuming no friction at the joints. This static interpretation can be written into the following mathematical condition where the forces in the elements of the clustered structure, \(\mathbf{\bar{f}} \), are related to the equivalent forces in the elements, \(\mathbf{f} \), of the equivalent classic structure through the transpose of the clustering matrix, \(\mathbf{S}^T \).

\[
\mathbf{f} = \mathbf{S}^T \mathbf{\bar{f}} \quad (3)
\]

The kinematic condition (1) and the static condition (3) convert classic variables into clustered variables and give a physical interpretation of clustering, but the other element vectors (e.g. Young’s modulus vector) also need to be reduced in size. The mappings from classic to clustered element vectors are the following.

\[
\mathbf{\bar{z}} = (\mathbf{S} \mathbf{S}^T)^{-1} \mathbf{S} \mathbf{z}
\]

\[
\mathbf{\bar{y}} = (\mathbf{S} \mathbf{S}^T)^{-1} \mathbf{S} \mathbf{y}
\]

\[
\mathbf{\bar{a}} = (\mathbf{S} \mathbf{S}^T)^{-1} \mathbf{S} \mathbf{a}
\]

\[
\mathbf{\bar{\epsilon}_a} = (\mathbf{S} \mathbf{S}^T)^{-1} \mathbf{S} \mathbf{\epsilon}_a
\]

These mappings average the values of the properties which in practice is usually not of consequence since the cables of a tensegrity structure tend to be the same diameter and modulus. Also, the vector of clustered element stiffnesses can be written as, \(\mathbf{\bar{k}} = \mathbf{\bar{y}} \mathbf{\bar{l}}_0^{-1} \mathbf{\bar{a}} \).

Definition 2.2 A clustered tensegrity structure is defined as equivalent to a classic tensegrity structure when the properties of the clustered structure are found from (1), (2), (3), (4) and the clustering matrix is arbitrary.

Definition 2.3 A classic tensegrity structure is defined as equivalent to a clustered tensegrity structure when the properties of the classic structure are found by setting \(\mathbf{S} \equiv \mathbf{I} \) in all of the property definitions of a clustered tensegrity structure.

Definition 2.4 The vector of force densities for a clustered structure is the vector of clustered forces in the elements divided by the vector of clustered lengths.

\[
\mathbf{\bar{\lambda}} = \mathbf{\bar{z}} \mathbf{\bar{k}} \mathbf{\bar{l}}^{-1} (\mathbf{I} - \mathbf{\bar{l}}_0) = \mathbf{\bar{y}} \mathbf{\bar{a}} \mathbf{\bar{l}}^{-1} (\mathbf{I} - \mathbf{\bar{l}}_0) \quad (5)
\]

Definition 2.5 The contribution of force density an actuator supplies can be redefined in a similar way.

\[
\mathbf{\bar{\lambda}}_a = \mathbf{\bar{z}} \mathbf{\bar{k}} \mathbf{l}_0^{-1} \mathbf{\bar{a}} \mathbf{\bar{\epsilon}_a} = \mathbf{\bar{y}} \mathbf{\bar{a}} \mathbf{l}_0^{-1} \mathbf{\bar{\epsilon}_a} \quad (6)
\]

To develop the clustered tensegrity equilibrium equations there are many approaches that can be taken. The energy approach is utilized in this paper to derive these equations and to determine if a given equilibrium state is stable. In general, the total potential energy of a system can be defined for any structure which is the sum of the internal strain energy of the structure, \(U \), the work done by active elements, \(W_a \), and the external loads, \(W_e \).

\[
\Pi_{sys} = U - W_a - W_e \quad (7)
\]

For a tensegrity structure with clustered elements the total potential energy is the following.

\[
\Pi_{sys} = \frac{1}{2}(\mathbf{I} - \mathbf{\bar{l}}_0)^T \mathbf{\bar{k}} (\mathbf{I} - \mathbf{\bar{l}}_0)
\]

\[
- \mathbf{\bar{\epsilon}_a}^T \mathbf{\bar{l}}_0 \mathbf{\bar{k}} (\mathbf{I} - \mathbf{\bar{l}}_0) - \int \mathbf{f}_e^T \mathbf{d}p \quad (8)
\]
By setting the first variation of the potential energy to zero, the clustered equilibrium equations can be derived.

\[C \tilde{g}^{-1} S^{T} \bar{\lambda} = f_e (p) \] (9)

The clustered equilibrium equations are a set of geometrically nonlinear equations that are valid for any tensegrity structure with or without clustered elements. The classic tensegrity equilibrium equations (no clustered elements) are a special case of the clustered tensegrity equilibrium equations. When the classic limit \((S \equiv I)\) is applied, the barred vectors are reverted from their reduced form to their full form and the clustered equilibrium equations reduce to the following classic equilibrium equations.

\[C \bar{g} (\lambda - \lambda_a) = f_e (p) \] (10)

3 Pre-stress and Mechanism Analysis

3.1 Pre-stress Analysis

To design an active tensegrity structure an initial state must be defined. From the initial state, subsequent shape changes or new equilibrium states can be determined quasi-statically or dynamically. To fully define the static state of a tensegrity structure the quadruple \(\Gamma = \{p, C, S, \lambda\}\) must be parameterized. It is assumed in this paper that the first three parameters, \(\{p, C, S\}\), are known and that the pre-stress states (equilibrium states) of the system are to be found under no external loads or actuation. The clustered tensegrity equilibrium equations are used to solve for the feasible pre-stress states.

\[\bar{A} \bar{\lambda} = 0 \] (11)

The clustered equilibrium matrix, \(\bar{A}\), can be defined as \(\bar{A} = C \tilde{g}^{-1} S^{T} \bar{I}\). Since there are cable elements that cannot carry a compressive load the following constraints must be applied.

\[\bar{\lambda}_{cables} \geq 0 \]
\[\| \bar{\lambda} \| > 0 \] (12)

The solution space for the set of clustered pre-stress force densities can be found at the intersection of the null space solution \(\Lambda = null(\bar{A})\) and the constraint \(\bar{\lambda}_c \geq 0\). The second constraint does not need to be explicitly applied since it is implicit in the null space solution. This solution space constitutes a convex polyhedral cone (Figure 3). The edges of the polyhedral cone in Figure 3 are known as extreme rays and constitute the basis that spans the solution space of the polyhedral cone, i.e. every solution can be decomposed into a linear combination of extreme rays. The extreme rays, \(\Lambda^E\), are also known as the extreme directions and denote the elementary pre-stress basis or elementary pre-stress modes of a tensegrity structure. For clarification, the extreme directions represent the most fundamental sub-units of a tensegrity structure that have their own state of self-stress (Figure 3). Determining the null space solution alone is not sufficient to find the elementary pre-stress modes of a tensegrity structure, but it does give an initial linearly independent basis within the solution space that can be transformed into the extreme basis, \(\Lambda^E\). The algorithm used to determine the extreme basis is similar to the ones used by Wagner and Gagneur and Klamt. In both papers the extreme directions of a polyhedral cone represented the elementary modes of chemical reactions from a set of stoichiometric equations and reaction flow constraints. The chemical/biomedical application of finding extreme directions of a polyhedral cone for chemical reaction systems is directly analogous to the structural application, where irreversible reaction constraints are synonymous with positive/negative force density constraints.

A similar algorithm was developed that uses the

Moored, K. W.
null space solution as the initial matrix solution for the elementary basis since it satisfies the systems of equations, however the constraints (12) must be used to transform the initial basis into the true fundamental basis. To transform the basis the principle of superposition is applied to the initial basis, i.e. the elementary modes can be determined by a linear superposition of the initial basis. However, there are only special superpositions that yield the elementary basis. First, the new basis vector must satisfy the force density constraints. Second, the new vector must be a minimal set meaning that it cannot be decomposed into two other vectors that satisfy the equilibrium equations and the constraints.

A combinatorial algorithm determines the set of all possible pre-stress states (up to an arbitrary scaling constant chosen by the designer) for a given parametric set, \(\{ p, C, S \} \). When clustering is applied to a classic structure with a known pre-stress basis, the new pre-stress analysis will admit a number of clustered pre-stress states, \(\tilde{s} \), which is less than or equal to the number of classic pre-stress states for the structure \((\tilde{s} \leq s) \). Even if the number of clustered pre-stress states is equivalent to the number of classic pre-stress states the relative values of the clustered state can be different than the relative values of the classic state. Thus having an algorithm that finds all of the pre-stress states for a clustered structure is vital.

![Figure 4](image)

Figure 4: (a) a classic planar tensegrity structure given a state of pre-stress. (b) the classic structure is converted to a clustered structure by cutting the bottom of the two top cables. The other top cable routes over a pulley on the upper right node and connects to the lower right node forming a cluster. The clustered structure does not have a pre-stress state for the same configuration which is shown in the free body diagram of the top right node.

It cannot be assumed that an arbitrary clustering route produces a self-stressable tensegrity structure even if the classic version of the structure has a feasible self-stress state. Figure 4 shows a planar tensegrity cross that classically has a well known self-stress state for any nodal configuration. Once cables 1 and 3 are clustered together the preceding pre-stress algorithm finds no feasible pre-stress basis. To show the validity of the pre-stress results an experiment was set up where a single cable is routed from node 1 to node 4. Another cable is added between node 1 and node 2 to create the classic tensegrity cross. When the cables are pre-stressed the structure has a well defined configuration (Figure 4a). If the cable between nodes 1 and 2 is removed then the structure cannot be pre-stressed in its initial configuration, i.e. there is no feasible self-stress state for the given parametric set (Figure 4c). This loss of pre-stress can be simply explained by looking at a free-body diagram of node 2 (Figure 4b). Since the tensions in cables 1 and 3 must equilibrate (consequence of clustering) they pair to form a force vector of arbitrary magnitude with a direction that always bisects the angle between the two cables. For the non-square configuration given in the example, the strut force vector can never fully balance the cluster force vector leaving a net unbalanced force vector that causes the structure to move away from its initial configuration. If the tensegrity cross is a perfect square then the force vectors will balance and there is a self-stress state (confirmed by the combinatorial algorithm).

3.2 Mechanism Analysis

Tensegrity structures may also have internal mechanisms that need to be determined to understand the response and the stability of the structures. From the kinematic interpretation of clustering it is known that the kinematic constraints acting on the nodes are reduced which leads to the conclusion that the number of internal mechanisms may increase but not decrease. Thus it is seen that the number of clustered mechanisms in a structure, \(\tilde{m} \), is greater than or equal to the number of mechanisms for the equivalent classic structure \((\tilde{m} \geq m) \).

The approach for determining the mechanisms of a clustered structure is the same as the approach given by Pellegrino and Calladine\(^1\) other than the form of the clustered compatibility matrix, \(\tilde{B} \), is different than the classic compatibility matrix. The clustered equivalent is the following.

\[
\tilde{B} = \tilde{A}^T = \tilde{s}I \tilde{s}^T g^T C^T
\]

By solving for the kernel of the compatibility matrix a set of nodal displacements are determined that, to first order, cause no extension of the elements
of the structure and are termed mechanisms. If the structure has no boundary constraints to reduce the size of the compatibility matrix then there are two types of mechanisms for a structure: rigid-body and internal mechanisms. When the mechanisms are found for a structure the internal mechanisms and rigid-body mechanisms will be mixed. Normally, only internal mechanisms are considered when determining if a structure is kinematically indeterminate since the rigid-body mechanisms are assumed. A procedure to determine the rigid-body mechanisms of a structure is presented in Pellegrino and Calladine (1986). Once the rigid-body mechanisms are found, \(\mathbf{r} \in \mathbb{R}^{n \times 3(dim - 1)} \), the full set of mechanisms, \(\mathbf{d}_* \in \mathbb{R}^{n \times 3n - rank(A)} \) can be orthogonalized to the set of rigid-body motions by the Gram-Schmidt orthogonalization procedure to give the set of internal mechanisms, \(\mathbf{d} \in \mathbb{R}^{n \times m} \).

\[
\mathbf{d} = \mathbf{d}_* - \mathbf{r} \left[\mathbf{d}_*^T \mathbf{r} (\mathbf{r}^T \mathbf{r})^{-1} \right]^T
\]

(14)

If internal mechanisms are found in the structure then it would be considered unstable if the states of self-stress do not stabilize the mechanisms.

4 Stability

The pre-stress basis \(\mathbf{A}^E \) of a tensegrity structure \(\Gamma \) constitutes a set of feasible force densities that satisfy equilibrium. These equilibrium solutions may be stable, neutrally stable, or unstable, making it important to classify the stability. Furthermore, even if a classical structure is stable it is not guaranteed that the equivalent clustered structure is stable since mechanisms may be produced by clustering. A structure is stable if the second variation of the potential energy is positive definite. The condition on the second variation leads to the following inequality on the tangent stiffness matrix of the structure. Stability is ensured if,

\[
\kappa = \frac{\partial^2 \Pi_{sys}}{\partial \mathbf{p}^2} > 0
\]

(15)

The tangent stiffness matrix for a classic tensegrity structure is given by \(^9\) as the following,

\[
\kappa = C \mathbf{g} \mathbf{g}^T C^T - C \mathbf{A} \mathbf{M}
\]

(16)

The first term reflects a material stiffness that arises from strain within the elements and the second term is a pre-stress stiffness (also called the stress matrix, \(\mathbf{O}^{20} \)) that arises from a reorientation of the pre-stress within the elements. This tangent stiffness matrix is valid for all pin-jointed structures except when clustering is present. Thus, before the stability of a clustered tensegrity structure is classified the clustered stiffness matrix must be derived.

The stiffness matrix for a clustered tensegrity structure is derived by taking the second derivative of the potential energy or the first derivative of the equilibrium equations. Thus the stiffness matrix is the following

\[
\kappa = \mathbf{A} \left(\mathbf{g} \mathbf{g}^T \mathbf{g}^T - \mathbf{g} \mathbf{g}^T \mathbf{g} \right) \mathbf{A}^T + \mathbf{C} \left(\mathbf{A}^T \mathbf{g}^T + \mathbf{g}^T \mathbf{A} \right) \mathbf{M}
\]

(17)

Connelly and Whiteley\(^{20}\) developed a rigorous mathematical approach to investigate the different classifications of the rigidity of tensegrity structures. The classifications are still relevant for clustered structures, but the stiffness matrix is different from the classical stiffness matrix. There are two classifications of stable structures: first-order rigid and pre-stress stabilized.

First-order rigidity occurs when a structure has no internal mechanisms (i.e. the kernel of \(\mathbf{A}^T \) is the rigid-body mechanisms alone). Thus any load on the structure will cause an extension of an element so that the first term of the stiffness matrix must be positive definite without the rigid-body motions. To determine positive definiteness the sign of the eigenvalues of a matrix may be investigated. For every rigid-body motion there is a zero eigenvalue which are overlooked when investigating the positive definiteness without the rigid-body motions.

Pre-stress stabilization occurs when a structure does have internal mechanisms but they are stabilized by a state of self-stress. Once the internal mechanisms for a structure are found from (14) they can be multiplied by the stiffness matrix to determine the force necessary to displace the structure in the direction of the mechanisms (\(\mathbf{f} = \kappa \mathbf{d} \)). If \(\mathbf{f}^T \mathbf{d} > 0 \) the mechanisms are stabilized, if \(\mathbf{f}^T \mathbf{d} = 0 \) they are neutrally stable and if \(\mathbf{f}^T \mathbf{d} < 0 \) they are unstable.

5 Results and Discussion

An example of a tensegrity structure with clustered elements is shown in Figure 5. In this example a classic tensegrity beam structure is composed of three four-strut prismatic structures. The modules are attached together in a way that no bars are connected to each other, making it a class 1 beam structure. Every top node of the four-strut unit cell has two cables that connect to the bottom nodes, which is necessary for there to be a feasible pre-stress basis.
when clustered elements are added to the structure. To be able to classically actuate this structure in a bending deformation, actuators can be embedded in 10 of the top elements and 10 of the bottom elements in the span direction. In this scenario antagonistic actuation can be utilized to minimize the addition of strain energy caused by actuation. Antagonistic actuation contracts the top elements while the bottom elements are simultaneously expanded.

Figure 5: A class 1 tensegrity beam composed of three unit cells with four clusters. There are about 84 pre-stress modes for the classic structure which is reduced to 1 global pre-stress mode for the clustered scenario. The top two clusters are contracted by 10% while the bottom two clusters are expanded by 10% to bend the structure in the spanwise direction.

Instead of using embedded actuation, clustered actuation can then be applied to this structure by creating four clustering routes. Each route runs along the top and bottom edges of the structure and is composed of 5 of the embedded active elements. Before clustering is applied there are 84 independent pre-stress modes, 17 internal mechanisms and 20 active elements. The internal mechanisms are stabilized by the states of self-stress, so the structure is pre-stress stable. After clustering is applied there is 1 pre-stress mode, 25 mechanisms and 4 active elements. The stiffness matrix is positive semi-definite when there is no pre-stress and positive definite (minus the rigid-body motions) when pre-stress is present, making the clustered structure pre-stress stabilized. The reduction in the number of pre-stress modes follows the outcome that the independent states of self-stress in a clustered structure are less than or equal to the number of states of self-stress in the equivalent classic structure ($\bar{s} \leq s$). The mechanisms also follow the outcome that the number of mechanisms in the clustered structure is greater than or equal to the number of mechanisms in the equivalent classic structure ($\bar{m} \geq m$).

In Figure 5 three of the nodes are pinned and the top clusters have actuated with 10% contraction while the bottom clusters have been expanded by 10% causing 36% spanwise tip deflection (normalized by the span length) in the positive z direction. There is also a 7% tip deflection (normalized by the span length) in the positive y direction. This unwanted deflection in the y direction could be minimized by intuitively varying the actuation amounts or an optimization strategy could be utilized to determine the necessary actuation strains to reach a target displacement field, similar to the one presented by Moored and Bart-Smith.

This example also shows a radical reduction in the number of pre-stress states of the structure from 84 down to 1 global pre-stress state. Having only one state makes the application of pre-stress during the fabrication of a structure much more straightforward. Stress can be applied to a single element in order to pre-stress the entire structure, after all of the other elements have been constructed to their proper lengths, \bar{l}_0. This characteristic has been taken advantage of by Kwan et al. and Smaili and Motro.

6 Conclusions

The potential energy for a clustered tensegrity structure has been developed. The equilibrium equations and stiffness matrix of a clustered tensegrity structure have been derived. Finding the pre-stress basis, the mechanisms, and the stability of a clustered structure has been discussed. The addition of the clustering matrix, S, to the classic set of parameters allows the classic tensegrity equations to be cast into a new form that includes clustered elements. The compact clustered equations are shown to be more general than the classic equations since they allow $S \neq I$. It is shown that clustering can offer a scalable actuation strategy, reduce the number of actuators, reduce the number of pre-stress modes to a single global mode, reduce the power requirements for accelerating a structure and to relieve el-
element size limitations due to embedded actuators. This formulation of clustered actuation also uses a
the binary clustering matrix which is well suited for future optimization of clustering routes.

References

1 S. Pellegrino, C. Calladine, Matrix analysis of statically and kinematically indeterminate frame-

